International Journal of Scientific & Engineering Research Volume 2, Issue 4, April-2011 1

ISSN 2229-5518

Separation of Concerns in VoiceXML
Applications

Sukhada P. Bhingarkar

Abstract— Many commercial applications provide customer services over the web like flight tracking, emergency notification, order
inquiry etc. VoiceXML is an enabling technology for creating streamlined speech-based interface for such web-based information ser-
vices. Whereas in computing, aspect-oriented programming (AOP) is a programming paradigm, which aims to increase modularity.
AOP includes programming methods and tools that support the modularization of concerns at the level of the source code. The aim of
this paper is to integrate AOP with VoiceXML. Aspect-Oriented Programming (AOP) encapsulates common low-level scattered code
within reusable components called aspects. There are certain tags in VoiceXML like ‘<nomatch>’, ‘<noinput>’, ‘<error>' which appear
commonly in every VoiceXML document. These tags can be considered as the concerns and can be put inside an aspect. This elimi-
nates the need to programmatically write these tags in every VoiceXML document and modularizes the crosscutting-concerns.

Index Terms— AOP, Aspect], ASR, IVR, TTS, VoiceXML, VXML

1 INTRODUCTION

he WWW has become primary source of information

all over the world and accounts for the major propor-

tion of entire Internet traffic. The next leading edge
for the research on the web is to make it accessible via
voice and audio. Considerable work has been done in this
direction, which includes the design of VoiceXML and
voice browsers. It allows voice applications to be devel-
oped and deployed in an analogous way to HTML for
visual applications.

Aspect orientation is not a completely new approach to
writing software. Aspect orientation is becoming a com-
monly adopted and de facto approach to practicing older
ideas that can be traced to almost the beginning of soft-
ware development. Development environments and tools
that weave code, pragma instructions, and even debug-
gers all contain some of the behavior that underlies the
aspect-oriented approach. It is a more modular imple-
mentation of the advantages that these technologies have
brought to their own domains in the past. Aspect-
oriented programming entails breaking down program
logic into distinct parts called as concerns. All
programming paradigms support some level of grouping
and encapsulation of concerns into separate, independent
entities by providing abstractions (e.g., procedures,
modules, classes, methods) that can be wused for
implementing, abstracting and composing these concerns.
But some concerns defy these forms of implementation
and are called crosscutting concerns because they "cut
across" multiple abstractions in a program. This paper

tries to integrate this feature of AOP with VoiceXML.
VoiceXML has certain tags which appear across the scope
of every VoiceXML page. These tags are crosscutting
concerns that can be defined in a modular fashion with
the help of aspect-oriented programming. This helps
modularization and code reuse in VoiceXML based
applications.

The rest of the paper is organized in following way:
section |l presents related work in this field. Section IlI
and IV discusses VoiceXML and AOP respectgively. The
paper, then, proposes an integration of AOP with
VoiceXML in Section V. Finally, the paper finishes with
conclusion in Section V1.

2 RELATED WORK

During past few years, several applications are
developed to assist visually impaired, technologically
uneducated and underprivileged people to acoustically
access the information that was originally intended to be
accessed visually via a personal computer (PC). Voice
response facilities are used for various kinds of
information over the phone: time, weather, horoscopes,
sports, cultural events and so on. Nuance is one of the
providers for speech and imaging solutions for businesses
and customers around the world that is based on IVR
systems. The VoiceXML along with Nuance 8.5 speech
recognition software can reduce cost and effort of
deploying voice-driven services. In [1], a VoiceXML-
driven audio wiki application is presented that is

IJSER © 2011
http://www.ijser.org

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 2, Issue 4, April-2011 2

ISSN 2229-5518

accessible via both the Public Switched Telephone
Network and the Internet. Users may access wiki content
via fixed or mobile phones or via a PC using web browser
or a Voice over IP service. Silog is a biometric authentica-
tion system that extends the conventional PC logon
process using voice verification [2]. SeeCCT is a
prototype of a multimodal social networking system
designed for sharing geographical bookmarks [3]. In [4],
VoiceXML portal is developed that allows people with a
mobile or usual phone to get informed about cultural
activities by dialing a phone number and by interacting
with a computer via voice. Domain-specific dialogs are
created in native languages viz. slavic languages using
VoiceXML [5]. HearSay is a non-visual Web browser
developed for visually impaired users [6].

Aspect] is one of the oldest and well-known aspect lan-
guages and it helped to bring AOP to the mainstream.
Aspect] is an extension of the Java language which de-
fines a special syntax for declaring aspects. The first ver-
sions of Aspect] featured compile-time source code weav-
ing and bytecode weaving. It later merged with Aspect-
Werkz which brought load-time weaving as well as As-
pectWerkz’s annotation style to the language. AOP is
used in a variety of fields. Aspect-oriented software de-
velopment had played an important role in the design
and implementation of PUMA which is a framework for
the development of applications that analyze and trans-
form C or C++ source code [7]. A framework for middle-
ware design is invented which is based on the Concurrent
Event-based Aspect-Oriented paradigm [8]. A fully dy-
namic and reconfigurable monitoring system is designed
based on the concept of Adaptable Aspect-Oriented Pro-
gramming (AAOP) in which a set of AOP aspects is used
to run an application in a manner specified by the adap-
tability strategy [9]. The model can be used to implement
systems that are able to monitor an application and its
execution environment and perform actions such as
changing the current set of resource management con-
straints applied to an application if the applica-
tion/environment conditions change. An aspect-oriented
approach is advocated as an improvement to the object
oriented approach in dealing with the issues of code tan-
gling and scattering in case of multilevel security [10].

3 VOICEXML

VoiceXML is HTML of Voice Web. It is W3C’s standard
XML format for specifying interactive voice dialogues
between a human and a computer. VoiceXML is a mar-
kup language for creating voice user interfaces. It uses

e Sukhada Bhingarkar is with the Computer Engineering Dept., MIT colle-
gee of Engineering, Kothrud, Pune, India — 411038
E-mail:sukhada.bhingarkar@gmail.com

Automatic Speech Recognition (ASR) and/or touchtone
(DTMF keypad) for input, and prerecorded audio and
text-to-speech (TTS) synthesis for output. Numerous
commercial vendors such as IBM, TellMe and BeVocal
provide voice browsers that can be used to “play” Voice-
XML documents. Current voice interfaces to the web are
of two types: voice interface to screen display and voice-
only interface. The dynamic voice interface presented in
this paper is a voice-only interface that uses a telephone
as an input and output device. Figure 1 shows the core
architecture of VoiceXML applications.

Document Serven]

F 3

VoiceXML h
Interpretar LW mceANL Interpreter |
Context

I

| Implementation Plattform ||

Fig. 1. Architectural Model of VoiceXML

A document server processes requests from a client ap-
plication, the VoiceXML Interpreter, through the Voice-
XML interpreter context. The server produces VoiceXML
documents in reply, which are processed by the Voice-
XML Interpreter. The VoiceXML interpreter context may
monitor user inputs in parallel with the VoiceXML inter-
preter. The implementation platform is controlled by the
VoiceXML interpreter context and by the VoiceXML in-
terpreter.

4 ASPECT ORIENTED PROGRAMMING (AOP)

The main idea of AOP is to isolate the cross-cutting con-
cerns from the application code thereby modularizing
them as a different entity. A cross-cutting concern is be-
havior, and often data, that is used across the scope of a
piece of software. It may be a constraint that is a characte-
ristic of your software or simply behavior that every class
must perform. The most common example of a cross-
cutting concern is that of logging. Logging is a cross-
cutting concern because it affects many areas across the
software system and it intrudes on the business logic.
Logging is potentially applied across many classes, and it
is this form of horizontal application of the logging aspect
that gives cross-cutting its name. Some central AOP con-
cepts are as follows:

Aspects: A modularization of a concern that cuts across
multiple objects. Transaction management is a good
example of a crosscutting concern in J2EE applications.

IJSER © 2011
http://www.ijser.org

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 2, Issue 4, April-2011 3

ISSN 2229-5518

Join Point: A point during the execution of a program,
such as the execution of a method or the handling of an
exception

Advice: The code that is executed when an aspect is in-
voked is called advice. Advice contains its own set of rules
as to when it is to be invoked in relation to the join point
that has been triggered. Different types of advice include
"around," "before" and "after" advice.

Pointcut: A predicate that matches join points. Advice is
associated with a pointcut expression and runs at any join
point matched by the pointcut (for example, the execution
of a method with a certain name).

Figure 2 shows the relationships between join points, as-
pects, pointcuts, advice, and your application classes.

lllq*ﬂ'l
sdvian arr) Rt B Covan. o mpee |

i st e bt

]
et ekl 1] - perind g -

b i o e
Wi gt

Loparn v af Mg s

» by Loy oyt = o Wl L
ket pog o 0 B

O] ol |, T e ™

o st

vl g e P (3 12 b momated whad @ i
W By i AT B e
sty i

e gt rarad, e ke Poamiy

Fig.2. Relationship of AOP concepts with application class [11]

Figure 3 shows a simple business logic class along with
an aspect applied to this class.

A Business bpgic cli sy

package 0T AL

public dass M Class

i
public wid foofrd ke, §tong nane)
i

Sysben ot yriviin " nsidefon find, Shing)");
¥

Eul:lix static veid ypaimSirin gl args)
My Class iy Ohj et = new My Class();
my0hjectfoo(l, "Ram Sham"),

H
H

Ay At applied foghe clzss
public aspect HdloWeadd
{poirdmi callFoirdon) © calliweid comn aop Ny Class £oofind, Sidng));
hefome() : callFoinbont()
¥ Syt vt g Hllo Werd2")
Sysbem nptprindng "nofhe aduice attached bo dhe call poirdon')y;

}
H

Fig.3. Business logic class along with aspect

5 INTEGRATING AOP WITH VOICEXML

VoiceXML tags such as ‘<nomatch>’, ‘<noinput>’ ‘<er-
ror>" are usually common tags in most of the VoiceXML
documents. Figure 4 shows VoiceXML example that illu-
strates basic capabilities of VoiceXML. This VoiceXML is
logically divided into three parts: header, body and foo-
ter. The header part can contain tags showing xml and
vxml version. The body part contains core business logic
while footer part has error handing and <naomatch>,
<noinput> tags.

<Taml vermlon="1.0" sncoding=" Las-BE80-1°7> g T
Syanl veruion="3 0" melie="TTp/ e, vl org S00L vml® el ! Lang a2

i
LMy Loty T Thew ofiliees Kadl g @ope 8T e O pAospTE
cpraaptsTlaiss dutes [the Tollowing choloes, o prospt>

dcholon mext="http: flwes yourbank scasple Lot iccs. vxel~F
Hranch Lo-oationa

o e Loalr

chniom mmxbeEitp: S yoorbank | exnapled interes b orEmlTr

Intereat Kates
L s bl
< s L
o ="ilmmat " = Body
<fLabd rumers"isvedtoent_seant” Sypes"ourtmoy
i
How msdh soold you 1ike o Lreest?

of2llads
Cadmit maxteEitp: e yoorbank s led s rclet fisveat
rome list="icvestaont_sacunt” _|

L) bl

Cracwia bk
fprompt¥D didn” &

o ot ch >

<noinpots fey, dom't slespt Lfoodinpats

undaratard yoa. €/praspts

arrory Eun
£iF ooade"gwstes’ grror badfetd’ ™ [Foww
Clog apee=ssEe e EFRCR RADFETTH CALEEITS #3553 5575
LiLrs
Llarrars
ivmal

Fig. 4. VoiceXML example

The commonly occurring tags in VoiceXML can be consi-
dered as crosscutting concerns and are encapsulated in a
special class i.e. an aspect. Figure 5 shows the Servlet that
is used to construct VoiceXML.

HezpServletResponiae

Fig. 5. Servlet generating VoiceXML code

doGet() or doPost() methods of Servlet concentrates only
on core logic code i.e. body part of VoiceXML. The header
and footer parts of VoiceXML will be taken care by an
aspect class shown in figure 6.

IJSER © 2011
http://www.ijser.org

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 2, Issue 4, April-2011 4

ISSN 2229-5518

[
publie asgeet AACSMLBoade FAndFoctar
{
A mfine poiatout for 450t (HECpSarTletheguast, HItpServiatBespanas)

bafors (EEtpSarvlistPegquest regoast, HtipSarvistRssponss responss) throws
IMException: capturalttpRegoest |(request, responsa)
i
SarvietOutpotitraes cut=response.gutiotpetStreas (]
ook, printini™<7zml versicn=\"1.04" ancoding=\"isc-00535-1\"73"}
ook, printlni®omml version=\"2,14"3"};
1

aftar{HttpServietheqeest request, HitpSsrvietResponse reaponsa) Chrows
IoExceprion: caprturafcipRegoest {regoeat, responsa)

SarvistOotpotitooan cotsrasponsn . gatoutputStrams () ;

oUL. PEIEELE(“CEETOr>")

oot. prietla(®<if cosd=*_ event = ‘arror.badfevoh’)\"»=")

GEt. prigtlm(=<log axpr=4% = wed ERRGR.BADFETCH CADGHT=sw “\"»"j s
out. primtlm(=<f10%")

out. prigtlo{~<ferrors=]:

FF Rawt of onde haodles momatch, poimput stc, Cage,
1

Fig. 6. Aspect applied to Servlet

6 CONCLUSION

VoiceXML is a language to create voice-user interfaces
while AOP allows us to dynamically modify our static
model to include the code required to fulfill the second-
ary requirements without having to modify the original
static model. Integration of AOP with VoiceXML better
separates the concerns of Voice based applications, there-
by providing modularization. This helps developers to
concentrate on core logic and promotes code reuse.

REFERENCES

[1] Constantinos Kolias et al, “Design and implementation of a
VoiceXML-driven wiki application for assistive environments
on the web”, Personal and Ubiquitous Computing, 2010,
Volume 14, Number 6, 527-539, Springer-Verlag London Li-
mited 2010

[2] Sergio Grau, Tony Allen, Nasser Sherkat, “Silog: Speech input
logon”, Knowledge-Based Systems, Volume 22, Issue 7, October
2009, Pages 535-539

[3] Stan Kurkovsky et al., “Mobile Voice Access in Social Network-
ing Systems”, in the Proceedings of 5t IEEE International Con-
ference on Information Technology: New Generations, Las Ve-
gas, USA, 7-9 Apr. 2008

[4] Evangelia Boufardea et al, “A Dynamic Voice Portal for Deli-
very of Cultural Content” in the Proceedings of 3rd Internation-
al Conference on Internet and Web Applications and Services
(ICIwW’08), Athens, 8-13 Jun. 2008

[5] Brkic M., Matetic M., “VoiceXML for Slavic Languages Applica-
tion Development”, in the Proceedings of IEEE international
conference on Human System Interactions, Krakow, Poland, 25-
27 May 2008

[6] Borodin Y, Mahmud J, Ramakrishman 1V, Stent A (2007) The
hearsay non-visual web browser. In: ACM international confe-
rence proceeding series, proceedings of the 2007 international
cross-disciplinary conference on web accessibility (W4A), vol
225. Banff, Canada, pp 128-129

[7] Matthias Urban, Daniel Lohmann, Olaf Spinczyk, “The Aspect-
Oriented Design of the PUMA C/C++ Parser Framework”. In:
AOSD '10: Proceedings of the 9th International Conference on

Aspect-Oriented Software Development, March 2010.

[8] Edgar Marques, Luis Veiga, Paulo Ferreira, “An extensible
framework for middleware design based on concurrent event-
based AOP”, ARM '10: Proceedings of the 9th International
Workshop on Adaptive and Reflective Middleware, November
2010

[91 Arkadiusz Janik, Krzysztof Zielinski, “AAOP-based dynamical-
ly reconfigurable monitoring system”, Information and Soft-
ware Technology, Volume 52 Issue 4, April 2010

[10] S. Kotrappa, Prakash J. Kulkarni, “Multilevel Security Using
Aspect Oriented Programming Aspect)”, ARTCOM '10: Pro-
ceedings of the 2010 International Conference on Advances in
Recent Technologies in Communication and Computing, Octo-
ber 2010

[11] Russell Miles, “Aspect) Cookbook™, O'Reilly, 2004

IJSER © 2011
http://www.ijser.org

http://www.ijser.org/

